Sheet metal mini cart

Joakim

New member
Messages
4
Reaction score
1
Hi,

I've cannot weld, but I got access to a CNC press brake. Therefore I would ask if anybody has any experience building gokart/mini karts in sheet metal, especially the frame.

Looking for inspiration :) I was looking like something as B is for Build Lamborghini "Jumpacon" (
), but in a less overkill manner and would all be bolted together :cool:
 

Attachments

  • 107692634_1462844643922165_2231863924424226386_n.jpg
    107692634_1462844643922165_2231863924424226386_n.jpg
    263.1 KB · Views: 8

Denny

Canned Monster
Messages
8,765
Reaction score
4,967
Location
Mayberry, Indiana
Yes a few years ago we had a guy on here who built a kart out of aluminum sheet. It is in the build off section. It was called the Alumakart. It won the build off that year.
 

Joakim

New member
Messages
4
Reaction score
1
Thank you!

It's not so much buying it - I work as an engineer so buying it is not an option :) Very solid build the Alumaflyer!
 

madprofessor

"Loose Cannon Creations"
Messages
2,899
Reaction score
890
Location
Jacksonville, Florida
building gokart/mini karts in sheet metal, especially the frame.
To be clear, you want to use an accurate press brake to form (boxed metal form?) structural frame components?
Mini kart? Do you mean as mini as those 5 little karts in the picture?
Do you want a rigid frame, or a suspension frame? If suspension, then a swingarm rear suspension, or independent rear suspension?
I've cannot weld
No welding on the kart, everything drilled for bolt-together (Lego kart)?
 

Functional Artist

Well-known member
Messages
4,506
Reaction score
1,817
Location
Toledo, Ohio
Here is some info that may interested you :cheers2:

Ladder Chassis
This is the earliest kind of chassis. From the earliest cars until the early 60s, nearly all cars in the world used it as standard. Even in today, most SUVs still employ it. Its construction, indicated by its name, looks like a ladder - two longitudinal rails interconnected by several lateral and cross braces. The longitude members are the main stress member. They deal with the load and also the longitudinal forces caused by acceleration and braking. The lateral and cross members provide resistance to lateral forces and further increase torsional rigidity.

Tubular Space Frame
As ladder chassis is not strong enough, motor racing engineers developed a 3 dimensional design - Tubular space frame. One of the earliest examples was the post-war Maserati Tipo 61 "Birdcage" racing car. Tubular space frame chassis employs dozens of circular-section tubes (some may use square-section tubes for easier connection to the body panels, though circular section provides the maximum strength), position in different directions to provide mechanical strength against forces from anywhere. These tubes are welded together and forms a very complex structure, as you can see in the above pictures. For higher strength required by high performance sports cars, tubular space frame chassis usually incorporate a strong structure under both doors (see the picture of Lamborghini Countach), hence result in unusually high door sill and difficult access to the cabin. In the early 50s, Mercedes-Benz created a racing car 300SLR using tubular space frame. This also brought the world the first tubular space frame road car, 300SL Gullwing. Since the sill dramatically reduced the accessibility of carbin, Mercedes had to extend the doors to the roof so that created the "Gullwings".
Since the mid 60s, many high-end sports cars also adopted tubular space frame to enhance the rigidity / weight ratio. However, many of them actually used space frames for the front and rear structure and made the cabin out of monocoque to cut cost.

Monocoque
Today, 99% cars produced in this planet are made of steel monocoque chassis, thanks to its low production cost and suitability to robotised production.
Monocoque is a one-piece structure which defines the overall shape of the car. While ladder, tubular space frame and backbone chassis provides only the stress members and need to build the body around them, monocoque chassis is already incoporated with the body in a single piece, as you can see in the above picture showing a Volvo V70.

In fact, the "one-piece" chassis is actually made by welding several pieces together. The floorpan, which is the largest piece, and other pieces are press-made by big stamping machines. They are spot welded together by robot arms (some even use laser welding) in a stream production line. The whole process just takes minutes. After that, some accessories like doors, bonnet, boot lid, side panels and roof are added.

Monocoque chassis also benefit crash protection. Because it uses a lot of metal, crumple zone can be built into the structure.

Another advantage is space efficiency. The whole structure is actually an outer shell, unlike other kinds of chassis, therefore there is no large transmission tunnel, high door sills, large roll over bar etc. Obviously, this is very attractive to mass production cars.

There are many disadvantages as well. It's very heavy, thanks to the amount of metal used. As the shell is shaped to benefit space efficiency rather than strength, and the pressed sheet metal is not as strong as metal tubes or extruded metal, the rigidity-to-weight ratio is also the lowest among all kinds of chassis bar the ancient ladder chassis. Moreover, as the whole monocoque is made of steel, unlike some other chassis which combine steel chassis and a body made of aluminium or glass-fiber, monocoque is hopelessly heavier than others.

Although monocoque is suitable for mass production by robots, it is nearly impossible for small-scale production. The setup cost for the tooling is too expensive - big stamping machines and expensive mouldings. I believe Porsche is the only sports car specialist has the production volume to afford that.

ULSAB Monocoque
Enter the 90s, as tougher safety regulations ask for more rigid chassis, traditional steel monocoque becomes heavier than ever. As a result, car makers turned to alternative materials to replace steel, most notable is aluminium. Although there is still no mass production car other than Audi A8 and A2 to completely eliminate steel in chassis construction, more and more cars use aluminium in body panels like bonnet and boot lid, suspension arms and mounting sub-frames. Unquestionably, this is not what the steel industry willing to see.
Therefore, American's steel manufacturers hired Porsche Engineering Services to develop a new kind of steel monocoque technology calls Ultra Light Steel Auto Body (ULSAB). As shown in the picture, basically it has the same structure as a conventional monocoque. What it differs from its donor is in minor details - the use of "Hydroform" parts, sandwich steel and laser beam welding.

Hydroform is a new technique for shaping metal to desired shape, alternative to pressing. Conventional pressing use a heavy-weight machine to press a sheet metal into a die, this inevitably creates inhomogenous thickness - the edges and corners are always thinner than surfaces. To maintain a minimum thickness there for the benefit of stiffness, car designers have to choose thicker sheet metal than originally needed. Hydroform technique is very different. Instead of using sheet metal, it forms thin steel tubes. The steel tube is placed in a die which defines the desired shape, then fluid of very high pressure will be pumped into the tube and then expands the latter to the inner surface of the die. Since the pressure of fluid is uniformal, thickness of the steel made is also uniformal. As a result, designers can use the minimum thickness steel to reduce weight.

Sandwich steel is made from a thermoplastic (polypropylene) core in between two very thin steel skins. This combination is up to 50 percent lighter compared with a piece of homogenous steel without a penalty in performance. Because it shows excellent rigidity, it is applied in areas that call for high bending stiffness. However, it cannot be used in everywhere because it needs adhesive bonding or riveting instead of welding.

Compare with conventional monocoque, Porsche Engineering claimed it is 36% lighter yet over 50% stiffer. Although ULSAB was just annouced in early 1998, the new Opel Astra and BMW 3-Series have already used it in some parts. I believe it will eventually replace conventional monocoque.

Backbone Chassis
Colin Chapman, the founder of Lotus, invented backbone chassis in his original Elan roadster. After failed in his experiment of glass-fibre monocoque, Chapman discovered a strong yet cheap chassis which had been existing for millions of years - backbone.

Backbone chassis is very simple: a strong tubular backbone (usually in rectangular section) connects the front and rear axle and provides nearly all the mechnical strength. Inside which there is space for the drive shaft in case of front-engine, rear-wheel drive layout like the Elan. The whole drivetrain, engine and suspensions are connected to both ends of the backbone. The body is built on the backbone, usually made of glass-fibre.

It's strong enough for smaller sports cars but not up to the job for high-end ones. In fact, the original De Tomaso Mangusta employed chassis supplied by Lotus and experienced chassis flex.

TVR's chassis is adapted from this design - instead of a rigid backbone, it uses a lattice backbone made of tubular space frames. That's lighter and stronger (mainly because the transmission tunnel is wider and higher).

https://www.sae.org/


It sounds like a Monocoque chassis is what your goin' for.
To me, these (2) quotes seem to "stand out" as most important. ;)

"the "one-piece" chassis is actually made by welding several pieces together."
"Although monocoque is suitable for mass production by robots, it is nearly impossible for small-scale production."
 

Joakim

New member
Messages
4
Reaction score
1
To be clear, you want to use an accurate press brake to form (boxed metal form?) structural frame components?
Mini kart? Do you mean as mini as those 5 little karts in the picture?
Do you want a rigid frame, or a suspension frame? If suspension, then a swingarm rear suspension, or independent rear suspension?

No welding on the kart, everything drilled for bolt-together (Lego kart)?
Exactly! I want it to be able bolted together. It might not be as light weight as a tube frame, but that's not the point.

I was actually thinking of a suspension frame with swingarm rear suspension and indepedent in the front (due to simplicity of not having to use driveshaft - but might be a possibility)
 

Joakim

New member
Messages
4
Reaction score
1
Here is some info that may interested you :cheers2:

Ladder Chassis
This is the earliest kind of chassis. From the earliest cars until the early 60s, nearly all cars in the world used it as standard. Even in today, most SUVs still employ it. Its construction, indicated by its name, looks like a ladder - two longitudinal rails interconnected by several lateral and cross braces. The longitude members are the main stress member. They deal with the load and also the longitudinal forces caused by acceleration and braking. The lateral and cross members provide resistance to lateral forces and further increase torsional rigidity.

Tubular Space Frame
As ladder chassis is not strong enough, motor racing engineers developed a 3 dimensional design - Tubular space frame. One of the earliest examples was the post-war Maserati Tipo 61 "Birdcage" racing car. Tubular space frame chassis employs dozens of circular-section tubes (some may use square-section tubes for easier connection to the body panels, though circular section provides the maximum strength), position in different directions to provide mechanical strength against forces from anywhere. These tubes are welded together and forms a very complex structure, as you can see in the above pictures. For higher strength required by high performance sports cars, tubular space frame chassis usually incorporate a strong structure under both doors (see the picture of Lamborghini Countach), hence result in unusually high door sill and difficult access to the cabin. In the early 50s, Mercedes-Benz created a racing car 300SLR using tubular space frame. This also brought the world the first tubular space frame road car, 300SL Gullwing. Since the sill dramatically reduced the accessibility of carbin, Mercedes had to extend the doors to the roof so that created the "Gullwings".
Since the mid 60s, many high-end sports cars also adopted tubular space frame to enhance the rigidity / weight ratio. However, many of them actually used space frames for the front and rear structure and made the cabin out of monocoque to cut cost.

Monocoque
Today, 99% cars produced in this planet are made of steel monocoque chassis, thanks to its low production cost and suitability to robotised production.
Monocoque is a one-piece structure which defines the overall shape of the car. While ladder, tubular space frame and backbone chassis provides only the stress members and need to build the body around them, monocoque chassis is already incoporated with the body in a single piece, as you can see in the above picture showing a Volvo V70.

In fact, the "one-piece" chassis is actually made by welding several pieces together. The floorpan, which is the largest piece, and other pieces are press-made by big stamping machines. They are spot welded together by robot arms (some even use laser welding) in a stream production line. The whole process just takes minutes. After that, some accessories like doors, bonnet, boot lid, side panels and roof are added.

Monocoque chassis also benefit crash protection. Because it uses a lot of metal, crumple zone can be built into the structure.

Another advantage is space efficiency. The whole structure is actually an outer shell, unlike other kinds of chassis, therefore there is no large transmission tunnel, high door sills, large roll over bar etc. Obviously, this is very attractive to mass production cars.

There are many disadvantages as well. It's very heavy, thanks to the amount of metal used. As the shell is shaped to benefit space efficiency rather than strength, and the pressed sheet metal is not as strong as metal tubes or extruded metal, the rigidity-to-weight ratio is also the lowest among all kinds of chassis bar the ancient ladder chassis. Moreover, as the whole monocoque is made of steel, unlike some other chassis which combine steel chassis and a body made of aluminium or glass-fiber, monocoque is hopelessly heavier than others.

Although monocoque is suitable for mass production by robots, it is nearly impossible for small-scale production. The setup cost for the tooling is too expensive - big stamping machines and expensive mouldings. I believe Porsche is the only sports car specialist has the production volume to afford that.

ULSAB Monocoque
Enter the 90s, as tougher safety regulations ask for more rigid chassis, traditional steel monocoque becomes heavier than ever. As a result, car makers turned to alternative materials to replace steel, most notable is aluminium. Although there is still no mass production car other than Audi A8 and A2 to completely eliminate steel in chassis construction, more and more cars use aluminium in body panels like bonnet and boot lid, suspension arms and mounting sub-frames. Unquestionably, this is not what the steel industry willing to see.
Therefore, American's steel manufacturers hired Porsche Engineering Services to develop a new kind of steel monocoque technology calls Ultra Light Steel Auto Body (ULSAB). As shown in the picture, basically it has the same structure as a conventional monocoque. What it differs from its donor is in minor details - the use of "Hydroform" parts, sandwich steel and laser beam welding.

Hydroform is a new technique for shaping metal to desired shape, alternative to pressing. Conventional pressing use a heavy-weight machine to press a sheet metal into a die, this inevitably creates inhomogenous thickness - the edges and corners are always thinner than surfaces. To maintain a minimum thickness there for the benefit of stiffness, car designers have to choose thicker sheet metal than originally needed. Hydroform technique is very different. Instead of using sheet metal, it forms thin steel tubes. The steel tube is placed in a die which defines the desired shape, then fluid of very high pressure will be pumped into the tube and then expands the latter to the inner surface of the die. Since the pressure of fluid is uniformal, thickness of the steel made is also uniformal. As a result, designers can use the minimum thickness steel to reduce weight.

Sandwich steel is made from a thermoplastic (polypropylene) core in between two very thin steel skins. This combination is up to 50 percent lighter compared with a piece of homogenous steel without a penalty in performance. Because it shows excellent rigidity, it is applied in areas that call for high bending stiffness. However, it cannot be used in everywhere because it needs adhesive bonding or riveting instead of welding.

Compare with conventional monocoque, Porsche Engineering claimed it is 36% lighter yet over 50% stiffer. Although ULSAB was just annouced in early 1998, the new Opel Astra and BMW 3-Series have already used it in some parts. I believe it will eventually replace conventional monocoque.

Backbone Chassis
Colin Chapman, the founder of Lotus, invented backbone chassis in his original Elan roadster. After failed in his experiment of glass-fibre monocoque, Chapman discovered a strong yet cheap chassis which had been existing for millions of years - backbone.

Backbone chassis is very simple: a strong tubular backbone (usually in rectangular section) connects the front and rear axle and provides nearly all the mechnical strength. Inside which there is space for the drive shaft in case of front-engine, rear-wheel drive layout like the Elan. The whole drivetrain, engine and suspensions are connected to both ends of the backbone. The body is built on the backbone, usually made of glass-fibre.

It's strong enough for smaller sports cars but not up to the job for high-end ones. In fact, the original De Tomaso Mangusta employed chassis supplied by Lotus and experienced chassis flex.

TVR's chassis is adapted from this design - instead of a rigid backbone, it uses a lattice backbone made of tubular space frames. That's lighter and stronger (mainly because the transmission tunnel is wider and higher).

https://www.sae.org/


It sounds like a Monocoque chassis is what your goin' for.
To me, these (2) quotes seem to "stand out" as most important. ;)

"the "one-piece" chassis is actually made by welding several pieces together."
"Although monocoque is suitable for mass production by robots, it is nearly impossible for small-scale production."
Thank you for the enlightment! Great source of information and nice to get some technical terms of what the types of frames actually is called.. I was actually thinking of a ladder frame, as due to simplicity. It says it's not strong enough and therefore they upgraded to tubular frame, BUT I think for this purpose it will decrease the complexity and maybe even make it possible to go offroad

The attached photo is pretty close to what i had in mind. I have access to a CNC punching machine and the CNC press brakes aswell so it would very easy to replicate and even better to produce - so I can go race in the woods with a couple of these bad boys ;)
 

Attachments

  • Developed_ladder_chassis_with_diagonal_cross-bracing_and_lightening_holes_(Autocar_Handbook,_1...jpg
    Developed_ladder_chassis_with_diagonal_cross-bracing_and_lightening_holes_(Autocar_Handbook,_1...jpg
    171.9 KB · Views: 5

Functional Artist

Well-known member
Messages
4,506
Reaction score
1,817
Location
Toledo, Ohio
Your welcome :thumbsup:

It looks like you have lots of research & design ahead of you, before you "brake" or "press" anything ;)

Keep us posted, as to your progress :cheers2:
 

madprofessor

"Loose Cannon Creations"
Messages
2,899
Reaction score
890
Location
Jacksonville, Florida
some technical terms of what the types of frames actually is called.
Your pic is what's labeled on the pic as a ladder frame, but that's not what I've ever called a ladder. In my vernacular, a ladder frame is a matching pair of long lateral rails positioned above/below each other with perpendicular (90-degree) little braces vertically placed between them, and I would never build one that way. A truss frame has the same lateral rails, but the braces are attached between them at a 45-degree angle in opposing pairs, point-to-point. It has a great deal more resistance to racking movement, and unlike a (90-degree bracing) ladder frame it can be built with much lighter materials than a straight beam construction frame like in your picture. Less weight, stronger frame.
 
Top